Deploy Azure File Sync

Use Azure File Sync to centralize your organization’s file shares in Azure Files, while keeping the flexibility, performance, and compatibility of an on-premises file server. Azure File Sync transforms Windows Server into a quick cache of your Azure file share. You can use any protocol that’s available on Windows Server to access your data locally, including SMB, NFS, and FTPS. You can have as many caches as you need across the world.

We strongly recommend that you read Planning for an Azure Files deployment and Planning for an Azure File Sync deployment before you complete the steps described in this article.

Prerequisites

  • An Azure file share in the same region that you want to deploy Azure File Sync. For more information, see:
  • At least one supported instance of Windows Server or Windows Server cluster to sync with Azure File Sync. For more information about supported versions of Windows Server and recommended system resources, see Windows file server considerations.
  • The Az PowerShell module may be used with either PowerShell 5.1 or PowerShell 6+. You may use the Az PowerShell module for Azure File Sync on any supported system, including non-Windows systems, however the server registration cmdlet must always be run on the Windows Server instance you are registering (this can be done directly or via PowerShell remoting). On Windows Server 2012 R2, you can verify that you are running at least PowerShell 5.1.* by looking at the value of the PSVersion property of the $PSVersionTable object:PowerShellCopy$PSVersionTable.PSVersion If your PSVersion value is less than 5.1.*, as will be the case with most fresh installations of Windows Server 2012 R2, you can easily upgrade by downloading and installing Windows Management Framework (WMF) 5.1. The appropriate package to download and install for Windows Server 2012 R2 is Win8.1AndW2K12R2-KB*******-x64.msu.PowerShell 6+ can be used with any supported system, and can be downloaded via its GitHub page. ImportantIf you plan to use the Server Registration UI, rather than registering directly from PowerShell, you must use PowerShell 5.1.
  • If you have opted to use PowerShell 5.1, ensure that at least .NET 4.7.2 is installed. Learn more about .NET Framework versions and dependencies on your system. ImportantIf you are installing .NET 4.7.2+ on Windows Server Core, you must install with the quiet and norestart flags or the installation will fail. For example, if installing .NET 4.8, the command would look like the following:PowerShellCopyStart-Process -FilePath "ndp48-x86-x64-allos-enu.exe" -ArgumentList "/q /norestart" -Wait
  • The Az PowerShell module, which can be installed by following the instructions here: Install and configure Azure PowerShell. NoteThe Az.StorageSync module is now installed automatically when you install the Az PowerShell module.

Prepare Windows Server to use with Azure File Sync

For each server that you intend to use with Azure File Sync, including each server node in a Failover Cluster, disable Internet Explorer Enhanced Security Configuration. This is required only for initial server registration. You can re-enable it after the server has been registered.

 Note

You can skip this step if you’re deploying Azure File Sync on Windows Server Core.

  1. Open Server Manager.
  2. Click Local Server:
    "Local Server" on the left side of the Server Manager UI
  3. On the Properties subpane, select the link for IE Enhanced Security Configuration.
    The "IE Enhanced Security Configuration" pane in the Server Manager UI
  4. In the Internet Explorer Enhanced Security Configuration dialog box, select Off for Administrators and Users:
    The Internet Explorer Enhanced Security Configuration pop-window with "Off" selected

Deploy the Storage Sync Service

The deployment of Azure File Sync starts with placing a Storage Sync Service resource into a resource group of your selected subscription. We recommend provisioning as few of these as needed. You will create a trust relationship between your servers and this resource and a server can only be registered to one Storage Sync Service. As a result, it is recommended to deploy as many storage sync services as you need to separate groups of servers. Keep in mind that servers from different storage sync services cannot sync with each other.

 Note

The Storage Sync Service inherits access permissions from the subscription and resource group it has been deployed into. We recommend that you carefully check who has access to it. Entities with write access can start syncing new sets of files from servers registered to this storage sync service and cause data to flow to Azure storage that is accessible to them.

To deploy a Storage Sync Service, go to the Azure portal, click Create a resource and then search for Azure File Sync. In the search results, select Azure File Sync, and then select Create to open the Deploy Storage Sync tab.

On the pane that opens, enter the following information:

  • Name: A unique name (per subscription) for the Storage Sync Service.
  • Subscription: The subscription in which you want to create the Storage Sync Service. Depending on your organization’s configuration strategy, you might have access to one or more subscriptions. An Azure subscription is the most basic container for billing for each cloud service (such as Azure Files).
  • Resource group: A resource group is a logical group of Azure resources, such as a storage account or a Storage Sync Service. You can create a new resource group or use an existing resource group for Azure File Sync. (We recommend using resource groups as containers to isolate resources logically for your organization, such as grouping HR resources or resources for a specific project.)
  • Location: The region in which you want to deploy Azure File Sync. Only supported regions are available in this list.

When you are finished, select Create to deploy the Storage Sync Service.

Install the Azure File Sync agent

The Azure File Sync agent is a downloadable package that enables Windows Server to be synced with an Azure file share.

You can download the agent from the Microsoft Download Center. When the download is finished, double-click the MSI package to start the Azure File Sync agent installation.

 Important

If you intend to use Azure File Sync with a Failover Cluster, the Azure File Sync agent must be installed on every node in the cluster. Each node in the cluster must be registered to work with Azure File Sync.

We recommend that you do the following:

  • Leave the default installation path (C:\Program Files\Azure\StorageSyncAgent), to simplify troubleshooting and server maintenance.
  • Enable Microsoft Update to keep Azure File Sync up to date. All updates, to the Azure File Sync agent, including feature updates and hotfixes, occur from Microsoft Update. We recommend installing the latest update to Azure File Sync. For more information, see Azure File Sync update policy.

When the Azure File Sync agent installation is finished, the Server Registration UI automatically opens. You must have a Storage Sync Service before registering; see the next section on how to create a Storage Sync Service.

Register Windows Server with Storage Sync Service

Registering your Windows Server with a Storage Sync Service establishes a trust relationship between your server (or cluster) and the Storage Sync Service. A server can only be registered to one Storage Sync Service and can sync with other servers and Azure file shares associated with the same Storage Sync Service.

 Note

Server registration uses your Azure credentials to create a trust relationship between the Storage Sync Service and your Windows Server, however subsequently the server creates and uses its own identity that is valid as long as the server stays registered and the current Shared Access Signature token (Storage SAS) is valid. A new SAS token cannot be issued to the server once the server is unregistered, thus removing the server’s ability to access your Azure file shares, stopping any sync.

The Server Registration UI should open automatically after installation of the Azure File Sync agent. If it doesn’t, you can open it manually from its file location: C:\Program Files\Azure\StorageSyncAgent\ServerRegistration.exe. When the Server Registration UI opens, select Sign-in to begin.

After you sign in, you are prompted for the following information:

A screenshot of the Server Registration UI
  • Azure Subscription: The subscription that contains the Storage Sync Service (see Deploy the Storage Sync Service).
  • Resource Group: The resource group that contains the Storage Sync Service.
  • Storage Sync Service: The name of the Storage Sync Service with which you want to register.

After you have selected the appropriate information, select Register to complete the server registration. As part of the registration process, you are prompted for an additional sign-in.

Create a sync group and a cloud endpoint

A sync group defines the sync topology for a set of files. Endpoints within a sync group are kept in sync with each other. A sync group must contain one cloud endpoint, which represents an Azure file share and one or more server endpoints. A server endpoint represents a path on a registered server. A server can have server endpoints in multiple sync groups. You can create as many sync groups as you need to appropriately describe your desired sync topology.

A cloud endpoint is a pointer to an Azure file share. All server endpoints will sync with a cloud endpoint, making the cloud endpoint the hub. The storage account for the Azure file share must be located in the same region as the Storage Sync Service. The entirety of the Azure file share will be synced, with one exception: A special folder, comparable to the hidden “System Volume Information” folder on an NTFS volume, will be provisioned. This directory is called “.SystemShareInformation”. It contains important sync metadata that will not sync to other endpoints. Do not use or delete it!

 Important

You can make changes to any cloud endpoint or server endpoint in the sync group and have your files synced to the other endpoints in the sync group. If you make a change to the cloud endpoint (Azure file share) directly, changes first need to be discovered by an Azure File Sync change detection job. A change detection job is initiated for a cloud endpoint only once every 24 hours. For more information, see Azure Files frequently asked questions.

To create a sync group, in the Azure portal, go to your Storage Sync Service, and then select + Sync group:

Create a new sync group in the Azure portal

In the pane that opens, enter the following information to create a sync group with a cloud endpoint:

  • Sync group name: The name of the sync group to be created. This name must be unique within the Storage Sync Service, but can be any name that is logical for you.
  • Subscription: The subscription where you deployed the Storage Sync Service in Deploy the Storage Sync Service.
  • Storage account: If you select Select storage account, another pane appears in which you can select the storage account that has the Azure file share that you want to sync with.
  • Azure file share: The name of the Azure file share with which you want to sync.

Create a server endpoint

A server endpoint represents a specific location on a registered server, such as a folder on a server volume. A server endpoint must be a path on a registered server (rather than a mounted share), and to use cloud tiering, the path must be on a non-system volume. Network attached storage (NAS) is not supported.

To add a server endpoint, go to the newly created sync group and then select Add server endpoint.

Add a new server endpoint in the sync group pane

In the Add server endpoint pane, enter the following information to create a server endpoint:

  • Registered server: The name of the server or cluster where you want to create the server endpoint.
  • Path: The Windows Server path to be synced as part of the sync group.
  • Cloud Tiering: A switch to enable or disable cloud tiering. With cloud tiering, infrequently used or accessed files can be tiered to Azure Files.
  • Volume Free Space: The amount of free space to reserve on the volume on which the server endpoint is located. For example, if volume free space is set to 50% on a volume that has a single server endpoint, roughly half the amount of data is tiered to Azure Files. Regardless of whether cloud tiering is enabled, your Azure file share always has a complete copy of the data in the sync group.

To add the server endpoint, select Create. Your files are now kept in sync across your Azure file share and Windows Server.

Configure firewall and virtual network settings

Portal

If you’d like to configure your Azure File sync to work with firewall and virtual network settings, do the following:

  1. From the Azure portal, navigate to the storage account you want to secure.
  2. Select the Firewalls and virtual networks button on the left menu.
  3. Select Selected networks under Allow access from.
  4. Make sure your servers IP or virtual network is listed under the appropriate section.
  5. Make sure Allow trusted Microsoft services to access this storage account is checked.
  6. Select Save to save your settings.
Configuring firewall and virtual network settings to work with Azure File sync

Onboarding with Azure File Sync

The recommended steps to onboard on Azure File Sync for the first with zero downtime while preserving full file fidelity and access control list (ACL) are as follows:

  1. Deploy a Storage Sync Service.
  2. Create a sync group.
  3. Install Azure File Sync agent on the server with the full data set.
  4. Register that server and create a server endpoint on the share.
  5. Let sync do the full upload to the Azure file share (cloud endpoint).
  6. After the initial upload is complete, install Azure File Sync agent on each of the remaining servers.
  7. Create new file shares on each of the remaining servers.
  8. Create server endpoints on new file shares with cloud tiering policy, if desired. (This step requires additional storage to be available for the initial setup.)
  9. Let Azure File Sync agent do a rapid restore of the full namespace without the actual data transfer. After the full namespace sync, sync engine will fill the local disk space based on the cloud tiering policy for the server endpoint.
  10. Ensure sync completes and test your topology as desired.
  11. Redirect users and applications to this new share.
  12. You can optionally delete any duplicate shares on the servers.

If you don’t have extra storage for initial onboarding and would like to attach to the existing shares, you can pre-seed the data in the Azure files shares. This approach is suggested, if and only if you can accept downtime and absolutely guarantee no data changes on the server shares during the initial onboarding process.

  1. Ensure that data on any of the servers can’t change during the onboarding process.
  2. Pre-seed Azure file shares with the server data using any data transfer tool over the SMB for example, Robocopy, direct SMB copy. Since AzCopy does not upload data over the SMB so it can’t be used for pre-seeding.
  3. Create Azure File Sync topology with the desired server endpoints pointing to the existing shares.
  4. Let sync finish reconciliation process on all endpoints.
  5. Once reconciliation is complete, you can open shares for changes.

Currently, pre-seeding approach has a few limitations –

  • Full fidelity on files is not preserved. For example, files lose ACLs and timestamps.
  • Data changes on the server before sync topology is fully up and running can cause conflicts on the server endpoints.
  • After the cloud endpoint is created, Azure File Sync runs a process to detect the files in the cloud before starting the initial sync. The time taken to complete this process varies depending on the various factors like network speed, available bandwidth, and number of files and folders. For the rough estimation in the preview release, detection process runs approximately at 10 files/sec. Hence, even if pre-seeding runs fast, the overall time to get a fully running system may be significantly longer when data is pre-seeded in the cloud.

Self-service restore through Previous Versions and VSS (Volume Shadow Copy Service)

 Important

The following information can only be used with version 9 (or above) of the storage sync agent. Versions lower than 9 will not have the StorageSyncSelfService cmdlets.

Previous Versions is a Windows feature that allows you to utilize server-side VSS snapshots of a volume to present restorable versions of a file to an SMB client. This enables a powerful scenario, commonly referred to as self-service restore, directly for information workers instead of depending on the restore from an IT admin.

VSS snapshots and Previous Versions work independently of Azure File Sync. However, cloud tiering must be set to a compatible mode. Many Azure File Sync server endpoints can exist on the same volume. You have to make the following PowerShell call per volume that has even one server endpoint where you plan to or are using cloud tiering.PowerShellCopy

Import-Module '<SyncAgentInstallPath>\StorageSync.Management.ServerCmdlets.dll'
Enable-StorageSyncSelfServiceRestore [-DriveLetter] <string> [[-Force]] 

VSS snapshots are taken of an entire volume. By default, up to 64 snapshots can exist for a given volume, granted there is enough space to store the snapshots. VSS handles this automatically. The default snapshot schedule takes two snapshots per day, Monday through Friday. That schedule is configurable via a Windows Scheduled Task. The above PowerShell cmdlet does two things:

  1. It configures Azure File Syncs cloud tiering on the specified volume to be compatible with previous versions and guarantees that a file can be restored from a previous version, even if it was tiered to the cloud on the server.
  2. It enables the default VSS schedule. You can then decide to modify it later.

 Note

There are two important things to note:

  • If you use the -Force parameter, and VSS is currently enabled, then it will overwrite the current VSS snapshot schedule and replace it with the default schedule. Ensure you save your custom configuration before running the cmdlet.
  • If you are using this cmdlet on a cluster node, you must also run it on all the other nodes in the cluster!

In order to see if self-service restore compatibility is enabled, you can run the following cmdlet.PowerShellCopy

Get-StorageSyncSelfServiceRestore [[-Driveletter] <string>]

It will list all volumes on the server as well as the number of cloud tiering compatible days for each. This number is automatically calculated based on the maximum possible snapshots per volume and the default snapshot schedule. So by default, all previous versions presented to an information worker can be used to restore from. The same is true if you change the default schedule to take more snapshots. However, if you change the schedule in a way that will result in an available snapshot on the volume that is older than the compatible days value, then users will not be able to use this older snapshot (previous version) to restore from.

 Note

Enabling self-service restore can have an impact on your Azure storage consumption and bill. This impact is limited to files currently tiered on the server. Enabling this feature ensures that there is a file version available in the cloud that can be referenced via a previous versions (VSS snapshot) entry.

If you disable the feature, the Azure storage consumption will slowly decline until the compatible days window has passed. There is no way to speed this up.

The default maximum number of VSS snapshots per volume (64) as well as the default schedule to take them, result in a maximum of 45 days of previous versions an information worker can restore from, depending on how many VSS snapshots you can store on your volume.

If max. 64 VSS snapshots per volume is not the correct setting for you, you can change that value via a registry key. For the new limit to take effect, you need to re-run the cmdlet to enable previous version compatibility on every volume it was previously enabled, with the -Force flag to take the new maximum number of VSS snapshots per volume into account. This will result in a newly calculated number of compatible days. Please note that this change will only take effect on newly tiered files and overwrite any customizations on the VSS schedule you might have made.

Migrate a DFS Replication (DFS-R) deployment to Azure File Sync

To migrate a DFS-R deployment to Azure File Sync:

  1. Create a sync group to represent the DFS-R topology you are replacing.
  2. Start on the server that has the full set of data in your DFS-R topology to migrate. Install Azure File Sync on that server.
  3. Register that server and create a server endpoint for the first server to be migrated. Do not enable cloud tiering.
  4. Let all of the data sync to your Azure file share (cloud endpoint).
  5. Install and register the Azure File Sync agent on each of the remaining DFS-R servers.
  6. Disable DFS-R.
  7. Create a server endpoint on each of the DFS-R servers. Do not enable cloud tiering.
  8. Ensure sync completes and test your topology as desired.
  9. Retire DFS-R.
  10. Cloud tiering may now be enabled on any server endpoint as desired.

For more information, see Azure File Sync interop with Distributed File System (DFS).

Next steps

Reference: https://docs.microsoft.com/en-us/azure/storage/files/storage-sync-files-deployment-guide?tabs=azure-portal